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First total synthesis of (�)-diospongin BI
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Abstract—The first total synthesis of (�)-diospongin B has been achieved starting from benzaldehyde using chiral allylation, a base
catalyzed conjugate addition of an a,b-unsaturated ester and an intramolecular oxy-Michael reaction as the key steps in 16% overall
yield.
� 2005 Elsevier Ltd. All rights reserved.
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The 2,4,6-trisubstituted tetrahydropyran core is found
in a number of natural products.1 Many examples pos-
sess a tetrahydropyran core, and show excellent biolo-
gical properties. Recently identified trisubstituted pyran
natural products include leucascandrolide A2 1, phor-
boxazole A3 2, and diospongins 3 and 4.4 We have been
interested in the total synthesis of bioactive natural
products, which contain substituted tetrahydropyran
rings (Fig. 1).

Diospongin B (4) is one such example isolated in 2003
from the rhizomes of Dioscorea spongiosa and was
reported to have anti-osteoporotic activity.4

As part of our research programme on the synthesis of
substituted tetrahydropyran-containing molecules,5 we
report herein, the first total synthesis of (�)-diospongin
B starting from benzaldehyde using a Keck asymmetric
allylation, a base catalyzed conjugate addition of an a,b-
unsaturated ester and an intramolecular oxy-Michael
reaction as the key steps (Scheme 1).

The chiral allyl phenyl carbinol 5, easily obtained by
Keck allylation6 of benzaldehyde was subjected to
one-pot ozonolysis-Wittig olefination7 with the stable
ylide, ethoxycarbonylmethylene triphenylphosphorane
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to furnish the a,b-unsaturated ester 6 in 79% yield.
The protected syn 1,3-diol derivative 7 was prepared in
61% yield by base catalyzed intramolecular conjugate
addition using PhCHO, t-BuOK in THF.8 Next, the
reduction of the ester group in compound 7 with lithium
aluminium hydride in THF gave compound 8 in 77%
yield. The primary alcohol in 8 was oxidized9 to the
aldehyde using IBX in THF/DMSO at room tempera-
ture and the corresponding crude aldehyde immediately
O

Me

O

OMe

O

N

Me

O

Me

Me

OH
OH

O

O

OMeO

 Phorboxazole A (2)

Figure 1.

mailto:srivaric@iict.res.in


O

OH

O O O

Ph

O

OH
CO2Et

OH

(-)-Diospongin B (4)

9

65

Scheme 1. Retrosynthetic analysis.
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treated under normal Wittig10 conditions with phenacyl
triphenylphosphonium bromide and t-BuOK in THF to
give the required E-enone derivative 9 in 77% yield over
two steps.

Finally, hydrolysis of the benzylidene acetal group as
well as intramolecular oxy-Michael addition was suc-
cessfully achieved in one-pot5a,11 with 50% TFA in
CH2Cl2 to furnish the target molecule 4 {½a�25D �18.4 (c
0.5, CHCl3),

12 HRMS: m/z = 297.1483 [M+H]+} as a
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Scheme 2. Reagents and conditions: (a) (i) O3, CH2Cl2, �78 �C, 30 min, the
PhCHO, t-BuOK, THF, 0 �C, 30 min, 61%; (c) LAH, THF, 0 �C to rt, 4 h, 77
THF, 0 �C to rt, 6 h, 77% (for two steps); (e) 50% TFA/CH2Cl2, 0 �C to rt,

Table 1.

No. 1H chemical shift

1 —
2 3.38 (dd) J2;20 ¼ 16:2, J2,3 = 6.03.00, (dd)
3 4.50 (dddd) J2,3 = 6.0, J20 ;3 ¼ 6:4; J 3;40 ¼ 1
4 2.12 (ddd) J3,4 = 2.8, J4;40 ¼ 14:5, J4,5 = 1.
4 0 1.74 (ddd) J 4;40 ¼ 14:5; J3;40 ¼ 11:8; J 40 ;5 ¼
5 4.75 (ddd) J5,6 = 2.5, J5;60 ¼ 11:7; J40 ;5 ¼ 1
6 2.08 (ddd) J6,7 = 2.8, J6;60 ¼ 14:5, J5,6 = 2.
6 0 1.84 (ddd) J 60 ;7 ¼ 2:8; J6;60 ¼ 14:5; J 5;60 ¼ 1
7 5.46 (t) J = 2.8
a, e 7.90 (m)
b, d 7.40 (m)
c 7.47 (m)
h, j 7.24 (m)
g, k 7.22 (m)
i 7.20 (m)
f —
l —
single isomer in 69% yield (Scheme 2). To confirm the
stereochemical outcome of the oxy-Michael reaction,
extensive NMR studies were conducted on (�)-diospon-
gin B. The assignment of the structure and stereochem-
istry of compound 4 was achieved by incisive and
detailed two-dimensional NMR studies, DQFCOSY,
NOESY, HSQC and HMBC. The 1H NMR and 13C
spectral assignments are given in Table 1. The HSQC
data clearly established the different carbons.

The position of the carbonyl carbon (C-1) could be
assigned by the HMBC correlation between the phenyl
protons (Ha and He) and carbonyl carbon (C-1). The
two phenyl groups were distinguished from each other
by HMBC cross-peaks between H6/C-g and H5/C-l
and also through NOE cross-peaks between H2/H4
and H2 0/H4 0. The HMBC cross-peaks between H3/C-7
and H7/C-3 indicate the presence of an ether linkage
between C-3 and C-7. The large coupling between H3/
H40 (11.8 Hz), H5/H60 (11.7 Hz), indicated that H3 and
H6 are in equatorial and that H4 0 and H6 0 are in axial
positions whereas the small couplings between H5/H6,
H5/H4 0 and H7/H6, H6 0 indicated that H4, H6 and
H7 are also in equatorial positions. NOE cross-peaks
between H3/H6 and H4 0/Hh, and the above described
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8 h 69%.

13C chemical shift

198.0
J 2;20 ¼ 16:2; J20 ;3 ¼ 6:4 44.7
1:8, J3,4 = 2.8 69.5
8 34.6
1:0 —
:0 74.0
5 36.5
1:8 —

73.1
128.2
128.6
133.3
128.3
125.8
127.9
141.2
128.9
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Figure 2.

Figure 3. Energy minimized structure of (�)-diospongin B.
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coupling constants support the boat conformation for
the pyran ring as shown in Figure 2. The structure deter-
mined through molecular mechanics studies on 4 is in
agreement with the experimental data (Fig. 3).13

In conclusion, the first total synthesis of (�)-diospongin
B has been realized. The syntheses of related substituted
tetrahydropyran molecules are under progress.
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